On the Benefits of Demand-based Planning and Configuration of Private 5G Networks

Caner Bektas, Cedrik Schüler, Robert Falkenberg, Philipp Gorczak, Stefan Böcker, Christian Wietfeld
Communication Networks Institute, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund
Email: {caner.bektas, cedrik.schueler, robert.falkenberg, philipp.gorczak, stefan.boecker, christian.wietfeld}@tu-dortmund.de

Abstract—High reliability and specific, application-driven requirements are the reason for the growing importance of private 5G networks or campus networks, which can be configured and deployed in a demand-driven manner. In this work, an experiment analyzing the need for demand-based configuration and planning of such private 5G networks is presented in form of a video, where a miniature racing track including a novel 5G-powered racing platform showcase two different 5G Standalone Time Division Duplex patterns for event-driven scenarios. Also, theoretical foundations are discussed together with the results of a simulative replica of the experiment, showing the benefits of demand-based configuration. These motivate the exploration of Machine Learning-based live planning and network parameterization which we present in our vision of future racing events, where private 5G networks can serve diverse participants, well-suited to their specific demands.

I. INTRODUCTION

In addition to the much-discussed reference use case of stationary private 5G networks (or campus networks) for temporary use will also be of very great interest in the future whenever extremely demanding local requirements have to be met by the communications network. One example is major international events (Formula 1, America’s Cup), where large amounts of data are required for event operations as well as for live audience engagement with low latencies and high reliability. In order to deploy these temporary networks quickly and flexibly, demand-driven and automated network planning and configurability are required [1].

There are related works which also analyze the benefits of dynamic configuration of 5G mobile networks. In [2] and [3] it is shown that the high performance of 5G networks when flexibly adapting the TDD pattern, instead of utilizing traditional static configurations. The authors in [4] present a Deep Reinforcement Learning-based algorithm to flexibly adapt the TDD pattern in order to maximize the throughput.

II. DEMAND-BASED CONFIGURATION AND PLANNING OF PRIVATE 5G NETWORKS EXPERIMENT SHOWCASE VIDEO

The experiment is showcased in the form a video described in the following, which can be watched by scanning the QR-Code or by following the link given in Fig. 2.

Fig. 2. To watch the experiment showcase video, scan the QR-Code or use following link: http://tiny.cc/RacingWith5GSpeeds

The schematic description of the architecture of the experiment is provided in Fig 3. As depicted, two FITENTH autonomous racing car platforms as well as an Unmanned Aerial Vehicle (UAV) (in a static, but cable-free setup) are utilized, which all carry a Quectel RM500q 5G Standalone (SA) modem.
 III. THEORETICAL FOUNDATIONS AND RESULTS

As can be seen in Fig 4, two different TDD patterns are compared to show their real world impact patterns on underlying applications. The downlink-focused pattern consists of 7 downlink slots, 1 special slot and 2 uplink slots and represents a typical constellation utilized in end-consumer mobile communication networks, where UEs request much higher data amounts on the downlink than transmitting on the uplink. However, vertical industries or in this case event-driven communications represented by a racing event are much more reliant on uplink communications. In the course of the miniature racing event presented here, first-person views of the racecars as well as a top-down view of the racing event provided by a drone have to be transmitted via 5G uplink connection. This means that the typical downlink-focused pattern provided by most of available 5G infrastructure will not suffice. Utilizing an Software-Defined Radio (SDR)-based 5G gNodeB (Amarisoft Callbox Classic), the configuration is thus adapted to a more uplink-focused TDD pattern, which consists of only 2 downlink slots, 1 special slot, and 7 uplink slots. This means, that not only the throughput of the uplink is increased but also the time between the uplink slots is decreased, which is especially critical for the Real-Time Transport Protocol (RTP) utilized for the live video streams. In RTP, packets are dropped exceeding a defined delay where real-time transmission would be impaired. Thus, not only the higher throughput of the uplink-focused pattern leads to better QoE, but also the increased uplink transmission occasions and the decreased duration of the downlink slots.

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMNeT++ version</td>
<td>5.6.2</td>
</tr>
<tr>
<td>INET version</td>
<td>4.2</td>
</tr>
<tr>
<td>Simu5G version</td>
<td>1.1</td>
</tr>
<tr>
<td>Number of runs per configuration</td>
<td>25</td>
</tr>
<tr>
<td>Simulation time</td>
<td>60 s</td>
</tr>
<tr>
<td>Number of vehicular UEs</td>
<td>2</td>
</tr>
<tr>
<td>Transmission power</td>
<td>11 dBm</td>
</tr>
<tr>
<td>Slot configuration (UL-driven)</td>
<td>n_{UL} = 7, n_{DL} = 2</td>
</tr>
<tr>
<td>Slot configuration (DL-driven)</td>
<td>n_{UL} = 2, n_{DL} = 7</td>
</tr>
<tr>
<td>User Datagram Protocol (UDP) payload</td>
<td>1460 Byte</td>
</tr>
<tr>
<td>Traffic load (first person video stream)</td>
<td>1 Mbit/s</td>
</tr>
<tr>
<td>Traffic load (aerial drone video stream)</td>
<td>8 Mbit/s</td>
</tr>
<tr>
<td>Latency restriction</td>
<td>0.1 s</td>
</tr>
</tbody>
</table>

In order to quantify the subjective QoE measured in the experiment, we carry out a simulative replica of the real world setup. For this, we use Objective Modular Testbed in C++ (OMNeT++) in combination with the Simu5G framework [5] to deploy a gNodeB with a server behind to further decode and process received video streams. A static drone and two autonomously driven racecars are modeled as UEs and send out a constant bit rate UDP video stream with 8 Mbit/s and 1 Mbit/s respectively. As we consider the video streams to be real-time data, we define a latency restriction \(t_{\text{max}} = 0.1 \) s and, thus, limit the queue size at Radio Link Control (RLC) layer to
contain no more than the data created within \(t_{\text{max}} \). We monitor the end-to-end packet delivery ratio and latency as KPIs, whereas end-to-end means the span from UDP packet creation to the UDP packet reception. Thus, this KPI excludes video encoding and decoding and is considered as a representative of QoE impacts in the real world experiment. The default parameterization of the simulation setup is summarized in Tab. I.

Fig. 5 shows the packet delivery ratio during an experimental run. For both slot configurations, a high KPI for the 1 Mbit/s first person view streams of the racecars can be observed. In contrast, the higher data rate stream of the drone shows significant losses in the downlink-driven setup compared to the uplink-driven system state, that confirm the QoE impressions in the video linked in Fig. 2. Missing packets cause video stuttering and fragments in the real world, because the video encoding utility is forced to interpolate individual frames as it lacks of sufficiently frequent incoming updates.

While this only considers two possible slot configurations, Fig. 6 evaluates the packet delivery ratio and end-to-end latency for different numbers of uplink slots \(n_{UL} \). In the encountered configuration, there is a total of 10 symbols of which one is reserved as a special subframe. Consecutively, there are 9 remaining subframes to be assigned to uplink or downlink traffic each. It can be seen that there is a sweet spot, where the number of uplink slots in the TDD pattern is optimal for the applications given here. For our scenario, the packet delivery ratio is already optimal with 5 uplink slots, but the latency can be reduced by increasing it to the selected 7 uplink slots. These simulation results can be utilized in the configuration of future network deployments to further improve the predicted TDD patterns and reduce live reconfigurations.

Last, we simulated the KPIs for both types of configurations as shown in Fig. 7. For the considered numerology with 15 kHz sub-carrier spacing, the evaluated number of resource blocks \(\{6, 15, 25, 50, 75, 100\} \) correspond to \(\{1, 4, 3, 5, 10, 15, 20\} \) MHz of bandwidth respectively. The results point out, that the uplink-driven and therefore demand-oriented configuration is capable to achieve high KPIs even under limited number of resource blocks.

In this work, we have investigated a small-scale experiment for dynamic racing events and focused on the need for demand-oriented configuration and planning of private 5G networks. The application of Radio Access Network (RAN) configuration techniques to better fit the uplink/downlink characteristics of the data flow has shown significant improvements and motivates further research. However, we aim to follow an real-time auto-adjustable concept for private 5G networks. Our overall vision of network design for such events is shown in Fig. 8 with our current setup on the right, and our future goal being illustrated on the left. The four core elements are envisioned in the following:

IV. OUTLOOK ON FUTURE WORK

In this work, we have investigated a small-scale experiment for dynamic racing events and focused on the need for demand-oriented configuration and planning of private 5G networks. The application of Radio Access Network (RAN) configuration techniques to better fit the uplink/downlink characteristics of the data flow has shown significant improvements and motivates further research. However, we aim to follow an real-time auto-adjustable concept for private 5G networks. Our overall vision of network design for such events is shown in Fig. 8 with our current setup on the right, and our future goal being illustrated on the left. The four core elements are envisioned in the following:
Fig. 8. Overall vision for the system design of a private 5G campus network to enable demand-based network operations, digital twinning, and event control. The illustrated core elements are: (1) digital twin, (2) network operation center, (3) racing team control, and (4) entertainment services.

(1) **Digital Twin**: The Digital Twin (DT) builds the most important component in our future system design, as it contains a full digital representation of the event in a 3D model, which allows a comprehensive data aggregation and the provision of interfaces to the other core elements. DTs are expected to be a key part of 6G.

(2) **Network Operation Center**: The network operation center for instance can utilize the information from the DT to monitor the communication network. In future works, this is also the entry point to apply ML-based predictions to maintain and proactively reconfigure the network for demand-based needs. Previous works have already shown promising performance increases by applying predictions to network slicing [6]. Also intelligent routing can be enabled by leveraging trajectory knowledge through predictions [7]. The work in [8] presents an approach for context classification and dynamic auto-parameterization in extension of the latter. The authors in [9] describe QoS predictions for in-advance behavior to sustain the functionality of communication-based Vehicle-to-Everything (V2X) services under changing conditions.

(3) **Racing Team Control**: Further event participants to benefit from the DT are the racing teams themselves, that can leverage the information flow to monitor the racecar’s performance, evaluate maneuvers in the digital representation before instructing the car to perform them, do predictive maintenance, and e.g. plan pit stop timings.

(4) **Entertainment Services**: The entertaining component of racing events is responsible for most of data traffic. Entertainment systems will experience new possibilities due to the interconnection with the DT. Augmented Reality (AR) is a well-known example to be expected for 5G and beyond technologies, where spectators will be able to follow the event and see context information and various perspectives in a digital representation of the event, which will happen in the DT.

ACKNOWLEDGMENT

This work has been supported by the Ministry of Economic Affairs, Innovation, Digitalisation and Energy of the State of North Rhine-Westphalia (MWiDE NRW) along with the Competence Center 5G.NRW under grant number 005-01903-0047 and the project Plan&Play under the funding reference 005-2008-0047, as well as by the German Research Foundation (DFG) within the Collaborative Research Center SFB 876 "Providing Information by Resource-Constrained Analysis", project A4 and B4.

REFERENCES

