Sie sind hier:



German 5G auction - A closer look into the value of the 5G frequencies


29.03.2019 – For all those who are interested in the on-going 5G auction, CNI presents some statistical data derived from the auction results published by the BNetzA.
The statistics show first of all the progress of the bids and the sum of the frequency blocks associated to each bidding party. In addition to that the cost per frequency spectrum (in Euro/Hz) is calculated as well as the split of the frequency spectrum and its associated cost. After the first 40 rounds this analysis shows for example that although the spectrum is almost evenly split (with percentages ranging from 23% to 27% associated to each bidder) the associated bids are significantly diverging (ranging from 12 % to 35%). As a bonus a chart showing the progress of the highest bidder per frequency block illustrates the dynamics of the ongoing auction on one glance. The charts will be updated at least once per day.

The analysis has been originally prepared for the lecture "Mobile Radio Networks" and "Business Economics of Information & Communication Technologies". The discussion of the German 5G auction serves as a vivid and timely case study to demonstrate the close and complex interdependencies of technology and economics.


5G-Conference of VDE ITG committee with over 200 participants


21.03.2019 – The timing could not have been better: just one hour before the national auction of 5G frequency bands was started on March 19, 2019, in Mainz, the participants of the 5G-technology-related conference „Future of Networking / Zukunft der Netze 2019 “ were welcomed by the chairs of the VDE-ITG commitee on communication networks and systems, Joachim Sachs, Ericsson, and Prof. Christian Wietfeld, TU Dortmund. The 16th conference of the series was jointly organized with the NetSys conference at TU Munich. The well attended conference featured invited talks primarily from industry representatives: from public and potential private 5G network operators (Dt. Telekom, Vodafone and Bosch), 5G international academia and manufacturers (IMDEA Madrid, Ericsson, Nokia) as well as further 5G stakeholders (such as automation manufacturer Siemens) and representatives from 5G related projects. Many participants also used the opportunity to attend sessions and workshops of the NetSys conference discussing primarily recent results from academic research. Within the VDE-ITG committee KT2, industry and academia representatives jointly organize workshops on „hot topics“ and regular conferences related to communication networks, such as the „Future of Networking“ conference series. Prof. Christian Wietfeld, head of the CNI at TU Dortmund, has been a co-chair of the KT 2 committee for over 10 years.


First Prize, IEEE ComSoc Student Competition Winners, 2018, Supervisor: Fang-Jing Wu


03.02.2019 – The outcome of our students’ project group has been awarded the First Prize by IEEE ComSoc Member and Global Activities Council for the IEEE ComSoc Student Competition 2018 in Abu Dhabi, United Arab Emirates. The project group entitled “Passenger Flows: Crowd Mobility Analytics with Edge Computing in Public Transport” is supervised by Junior Professor Dr. Fang-Jing Wu at Department of Electrical Engineering and Information Technology, Communication Networks Institute, TU Dortmund. The student team formed by Lucas Döring, Stephanie Althoff, Kai Bitterschulte, Keng Yip Chai, Damian Grabarczyk, Yunfeng Huang, and Lidong Mao, exploits Internet-of-Things techniques combining with machine learning algorithms to solve one of the important issues in public transport in smart cities. The goal of the developed system is to monitor passenger flows in an automated public transport system. To achieve this goal, lightweight embedded devices are integrated with multiple types of sensors for sensing wireless network activities and environmental conditions, and the onboard passenger estimation algorithms are designed for analyzing real-time data and further visualization. Therefore, the technical issues in wireless opportunistic communications, multi-modal sensing and data analytics, and visualization are addressed by the team. To conduct real-world experiments, the designed prototype was validated in the H-Bahn Dortmund that is an automated hanging train in the TU Dortmund’s campus.

The developed system was evaluated by an international committee with 45 experts nominated by the Competition Co-Chairs and by IEEE ComSoc Technical Committee, covering all areas. Two-round evaluation processes were performed by the committee from different aspects of social impact, technical content, originality, practical applicability and results, and quality of presentation. The developed system is characterized by giving insight into the uncertain wireless traffic and environmental conditions via an integration of sensing techniques, statistical learning algorithms, prototyping, and practical experiments in the real world, which makes the work particularly compelling and provide a physical gateway to a connected cyber world. Congratulations to the team at Communication Networks Institute, TU Dortmund.